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1 Introduction

The expected scenario for the phase diagram of QCD in the chemical potential-temperatu-

re plane is based on the conjecture that, besides the well established hadronic and quark-

gluon plasma phases, there exists a new state of matter. This new phase is characteristic

of the high density, low temperature regime: the asymptotic freedom of QCD and the

known instability of large Fermi spheres, in the presence of weak attractive forces, results

in a pairing of quarks with momenta near the Fermi surface (in analogy with the Cooper

pairing in solid state systems at low temperature). A condensation of quark pairs should

be the distinctive signal of the new phase and it has indeed been predicted using simplified

phenomenological models of QCD. Unfortunately the lattice approach, the most powerful

tool to perform first principles, non perturbative studies, is afflicted in the case of finite

density QCD by the well known sign problem that, notwithstanding a large amount of work

by many people [1], has prevented until now any significant step towards the understanding

of this new phase.

An alternative strategy to overcome the sign problem consists in reformulating the

theory, not in terms of the microscopic degrees of freedom (quarks and gluons in the QCD

case), but in perhaps some other more physical variables (mesons, baryons, etc. [2, 3]).

Following this line Karsch and Mütter [2] analyzed the phase diagram of strongly coupled

QCD with SU(3) gauge fields, staggered fermions and four flavors. By integrating out the

SU(3) gauge fields [4] Karsch and Mütter constructed a new representation of the QCD

partition function as a statistical system of monomers, dimers and polymers (MDP-system).

Even if at finite density some of the Boltzmann weights were still negative in the new QCD

representation, they claimed that the dominant contributions to the partition function

had positive weights; and this allowed for the construction of an algorithm that generates
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configurations distributed according to the absolute value of the integration measure, with

the sign of the Boltzmann weights being absorbed into the observables [5, 6].

Unfortunately the continuum limit of QCD lies not in the strong coupling regime but

in the weak coupling regime, and here the pure gauge Boltzmann factor strongly changes

the gauge integration rules [4], invalidating the MDP-QCD representation for the partition

function. Indeed the MDP representation would be the zeroth order expansion of the

partition function in powers of β, the square of the inverse gauge coupling.

The Karsch and Mütter results for the strong coupling limit of finite density QCD

could, in principle, be extended to higher order in the expansion in β. This extension will

obviously increase the complexity of the graphs contributing to the new representation

of the QCD partition function, and furthermore, it is not clear at all whether the sign

problem in the new representation will become a weak sign problem, as in the strong

coupling case, or a severe sign problem [7]. In any case, the physical relevance of the

system under consideration makes it worthwhile to try such a line of research. In addition

there are other physically relevant gauge models with a sign problem, such as systems with

a topological θ-term in the action, where these techniques could also be applied [8–17].

Several years ago Prokof’ev and Svistunov [18] proposed new algorithms for classical

statistical spin systems, the worm algorithms, based on the use of a new representation of

the partition function for these systems which emerges from the high temperature expan-

sion. The use of this expansion involves introducing a new configuration space for the Ising

model made up from monomers, dimers and closed paths, with their corresponding exclu-

sion rules. Prokof’ev and Svistunov showed how these worm algorithms applied to several

spin systems essentially eliminate critical slowing down, with dynamic critical exponents

close to zero, and yet remain local. These results have been recently corroborated in [19]

for the Ising model, reporting a detailed error analysis and a generalization of the method

of [18].

Our aim in this paper is to construct and apply algorithms for the strong coupling

representation of the partition function of three and four-dimensional abelian pure gauge

models, in particular U(1) and Z(2) [20]. Independently of our aforementioned motivation,

it seems interesting to us to construct these algorithms and to compare them with standard

ones, such as heat-bath, in order to see if, as reported in [18, 19, 21] for spin systems, critical

slowing down is also practically absent in gauge systems. This is precisely the reason why we

have also simulated the three-dimensional Ising-gauge model. Indeed contrary to the U(1)

model, the three-dimensional Ising-gauge model, which is dual of the Ising model in three

dimensions, shows a second order phase transition were critical slowing down is present

in the standard algorithms. The generalization of the strong coupling representation of

the partition function to the U(1) model with dynamical fermion matter fields, which in

principle suffers from the sign problem (at least in more than two dimensions) [22, 23], will

be reported in a forthcoming publication.

The paper is organized as follows. In section II we analyze the strong coupling repre-

sentation of the partition function, discuss the possible structures which can appear in the

abelian model, and compute the configuration transition probabilities for local changes.

Section III shows how to compute in the new representation thermodynamic quantities,
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such as the plaquette energy, specific heat, Wilson loops and correlation functions. In

section IV we describe the implementation of our algorithm, report numerical results for

the three and four dimensional U(1) compact model, and compare the efficiency of our

algorithm against heat-bath. Section V contains our results for the three-dimensional

Ising-gauge model which, as stated before, is a good laboratory to check the efficiency

of the algorithm near second order phase transition points. Last section is devoted to

summarize our conclusions and discuss possible extensions of this work.

2 Abelian groups

We will consider an (euclidean) abelian U(1) gauge theory on the lattice with the usual

Wilson action,

S = −βRe
∑

n,µ,ν
µ<ν

Uµ(n)Uν(n + µ)U †
µ(n + ν)U †

ν (n) = −
Np
∑

k=1

β

2
(Uk + U∗

k ) (2.1)

where Np is the number of plaquettes of the lattice, k indexes the plaquettes of the lattice

and Uk and U∗
k are the oriented product of gauge fields along plaquette k and its complex

conjugate respectively.

The starting point of the algorithm is the strong-coupling expansion of the partition

function:

Z =

∫

[

∏

n,µ

dUµ(n)

]

Np
∏

k=1

e
β
2
(Uk+U∗

k
) =

∫

[DU ]
∏

k

{

∞
∑

n=0

(β
2 )n

n!
(Uk + U∗

k )n

}

=

∫

[DU ]
∏

k







∞
∑

n=0

(β
2 )n

n!





n
∑

j=0

(

n

j

)

(Uk)
j(U∗

k )n−j











=

∫

[DU ]
∏

k







∞
∑

j1,j2=0

(β
2 )j1+j2

(j1 + j2)!

(

j1 + j2

j1

)

(Uk)
j1(U∗

k )j2







(2.2)

If we expand the product over the plaquettes we get a sum of terms, which can be uniquely

labeled by giving a couple of natural numbers for each plaquette (nα
k , n̄α

k ), where nα
k and n̄α

k

correspond to the powers of Up and U∗
p and the super-index α refers to a specific term in the

expansion. After integration over the gauge fields, the only non-vanishing contributions to

Z are those in which every link corresponding to a plaquette with (nα
k , n̄α

k ) 6= (0, 0) appears

accompanied by its complex conjugate. Each of these contributions therefore can consist

only of plaquettes with nα
k = n̄α

k , and plaquettes which form closed orientable surfaces. We

can write

Z(β) =
∑

α

Cα(β) (2.3)

where α indexes the set of non-vanishing contributions. The (non-negative) weight corre-

sponding to such a contribution is given by

Cα(β) =
∏

k

βnα
k
+n̄α

k

2nα
k
+n̄α

k nα
k !n̄α

k !
(2.4)
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Now we can view Z as the partition function of a new system, where a configuration α is

characterized by the set of numbers (nα
k , n̄α

k ) corresponding to a non-vanishing contribution

to the strong coupling expansion, with probability wα = Cα/Z, and implement a Monte

Carlo in this new configuration space. We define elementary Monte Carlo moves consisting

in adding a “double plaquette”, (nα
k , n̄α

k ) → (nα
k +1, n̄α

k +1) (as well as the opposite move, if

both nα
k , n̄α

k > 0), and adding an elementary cube (as well as removing it if present). This

ensures that we stay inside the set of non-vanishing contributions. We choose the transition

probabilities to be proportional to the weights of the corresponding configurations in the

partition function, which ensures detailed balance. This can be done efficiently, and it is

also easy to see that the algorithm is ergodic.1

The gauge Zp model can be handled in the same way, the only difference being that

now there are additional non-vanishing contributions given by powers of p of the plaquette

or its complex conjugate, that is, we must allow contributions with nα
k − n̄α

k = 0 (mod p).

The weight of a configuration is given by the same expression as before (2.4). The only

modification required in the algorithm is adding a new move which creates or destroys a p

power of the plaquette or its complex conjugate.

3 Observables

The computation of observables is quite easy in this representation. The definition of the

observable plaquette2 is

〈P�〉 =
1

NP
∂β ln (Z) (3.1)

Using (2.3) and (2.4), we obtain

〈P�〉 =
1

NP
∂β ln

(

∑

α∈C

Cα

)

=
1

NP

1

Z
∑

α∈C

(nα + n̄α)

β
Cα (3.2)

with

nα =

NP
∑

k=1

nα
k

n̄α =

NP
∑

k=1

n̄α
k

The quantity Cα/Z is the probability wα of each configuration α. The mean of the ob-

servable plaquette is then

〈P�〉 =
1

βNP

∑

α∈C

wα (nα + n̄α) (3.3)

1A single surface that wraps around the lattice cannot be created by this algorithm starting from the

empty configuration, but this is only a finite-volume correction.
2We must remark that the observable plaquette and the plaquettes living in our lattice are not the same,

although they are strongly related. The observable plaquette refers to the minimal Wilson loop, whereas

the plaquettes refers to geometric entities, living on the lattice. In order to keep the discussion clear, we

will always refer to the minimal Wilson loop as observable plaquette.
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that is to say, the observable plaquette is equal to the mean value of the sum of the

occupation numbers nα plus n̄α divided by β and normalized by Np.

Another interesting observable is the specific heat

CV = ∂β〈P�〉 (3.4)

We can profit from the previous expression of P� (3.3) to find the following equation

CV =
1

NP







∑

α∈C

wα (nα + n̄α)2

β2
−
(

∑

α∈C

wα (nα + n̄α)

β

)2

−
∑

α∈C

wα (nα + n̄α)

β2







(3.5)

Sometimes, it is interesting to compute correlation observables, such as the Wilson

loop (larger than the single observable plaquette), or the plaquette-plaquette correlation

function. To compute these it will prove helpful to introduce a couple of variable coupling

constants {βk, β̄k}, which depend on the plaquette site k, in such a way that the partition

function reads now

Z(βj , β̄j) =

∫

[dU ]
∏

k

e

“

βk
2

Uk+
β̄k
2

U⋆
k

”

(3.6)

The weight of the configurations changes accordingly

Cα(βj , β̄j) =

NP
∏

k=1

β
nα

k

k β̄
n̄α

k

k

2nα
k
+n̄α

k

(

nα
k !
) (

n̄α
k !
) (3.7)

Now the correlation functions or the Wilson loops are computed by simple derivation, and

then taking all the βk, β̄k to the same value. For instance, the 2 × 1 Wilson loop can be

calculated as

〈PW2×1
〉 = 22 lim

βj ,β̄j→β

∑

α∈C ∂βk
∂βk+1

Cα
(

βj , β̄j

)

∑

α∈C Cα
(

βj , β̄j

) = 22
∑

α∈C

nα
knα

k+1

β2
wα (3.8)

where k and k+1 are contiguous plaquette sites. The generalization of this result to larger

planar Wilson loops is straightforward. Indeed the expectation value of any planar Wilson

loop can be computed as the mean value of the product, for all plaquettes enclosed by

the loop, of the occupation number of plaquettes in each plaquette site, multiplied by a

factor 2/β to a power which is just the number of plaquettes enclosed by the loop. This

observable is quite remarkable, for it is computed as a product of occupation numbers, and

features a (2/β)Area factor, which eventually may become exponentially large or small, as

the size of the loop increases. All these particular facts render this observable hard to

compute, as we will see in the numerical results.

In the same way we can also obtain the correlation functions for two arbitrary plaque-

ttes of the lattice:

〈UkUl〉 = 22 lim
βj ,β̄j→β

∑

α∈C ∂βk
∂βl

Cα
(

βj , β̄j

)

∑

α∈C Cα
(

βj , β̄j

) = 22
∑

α∈C

nα
knα

l

β2
wα (3.9)
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and

〈UkU
∗
l 〉 = 22 lim

βj ,β̄j→β

∑

α∈C ∂βk
∂β̄l

Cα
(

βj , β̄j

)

∑

α∈C Cα
(

βj , β̄j

) = 22
∑

α∈C

nα
k n̄α

l

β2
wα (3.10)

Finally from (3.9) and (3.10) and taking into account the symmetry of the model we can

write:

〈ReUkReUl〉c =
1

β2
〈(nk + n̄k) (nl + n̄l)〉 − 〈nk + n̄k〉 〈nl + n̄l〉 (3.11)

〈ImUkImUl〉c = − 1

β2
〈(nk − n̄k) (nl − n̄l)〉 (3.12)

where the brackets denote average over configurations.

4 Implementation and numerical results

In order to see our algorithm (which we should call, from now on, geometric algorithm) at

work, we have performed numerical simulations of several lattice gauge theory systems, in

three and four dimensions. Our aim is to check the goodness of our approach, comparing the

results we obtain using the geometric algorithm with those obtained from more standard

ones; hence we want to compare the properties of the algorithm itself, in term of numerical

efficiency and autocorrelation times with, for example, the usual heat-bath algorithm. We

have in mind the results of [19] where it was claimed that with a similar algorithm, at a

second order critical point in a non-gauge system, there is a very strong reduction in the

critical slowing down.

Let us start with the three dimensional U(1) lattice gauge model: this model is known

to have a single phase from strong to weak coupling. We have chosen to measure two simple

observables, namely the plaquette observable and the specific heat, following the definitions

given in the preceeding section. We have simulated the model with our algorithm and with

a standard heat-bath for a large interval of β values using a 123 lattice; we allowed the

system to reach thermalization for 5 × 104 iterations and then measured the observables

for 106 iterations. Errors are evaluated using a Jackknife procedure. The results are shown

in figure 1. We can easily see in this figure that the two simulations give essentially the

same results.

Almost the same situation can be depicted also for the four dimensional U(1) model;

the results of a similar set of simulations, performed with the two algorithms on a 164 lattice,

are shown in figure 2. Here the only difference can be seen near the phase transition point.

Remember that due to the difference in finite volume terms between the two algorithms,

the precise pseudo-critical coupling value at finite volume has to be slightly different. We

have calculated a few more points very close to the critical beta for each algorithm, and

the results can be seen in tables 1 and 2. Note the much larger value of the specific heat

for some of these points as compared with figure 2.

These results allow us to infer that the geometric approach is able to reproduce all the

features of the models under investigation, and when differences are seen they can be easily

explained on the difference between finite volume terms. To study more carefully these

– 6 –
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Figure 1. Three dimensional U(1) lattice gauge system. Errors are smaller than symbols.
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Figure 2. Four dimensional U(1) lattice gauge system; please note the different scale for the specific

heat on the right. Largest errors (those on the pseudo-critical point) are smaller than symbols.

differences we have calculated βc(L), the critical coupling for each algorithm at different

lattice sizes. We present in table 3 the results. We also include in the table the results of a

fit of βc(L) for the three largest lattices from each set to the finite-size scaling law expected

for a first-order phase transition [24]. This gives a good fit and consistent results for the

infinite volume limit.

The presence of two clearly different phases in this model, namely a confining and a

Coulomb one, allows us to study the behaviour of the Wilson loop results in two different
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β Plaquette Cv

1.011100 0.65473(6) 2.6034(1)

1.011600 0.65576(12) 2.5559(2)

1.010700 0.62545(34) 24.1(3)

1.010850 0.64014(143) 88.2(2)

1.010900 0.64940(54) 47.9(4)

β Plaquette Cv

1.011120 0.6373(45) 67.2(7)

1.011160 0.6423(46) 67.4(3.6)

1.011420 0.6549(1) 2.9660(2)

Table 1. Heat-bath results near βc Table 2. Geometric results near βc

L βc(L) (heat-bath) βc(L) (geometric)

6 1.00171(8) 1.00878(20)

10 1.00936(11) 1.01062(7)

12 1.01027(8) 1.01100(7)

14 1.01064(4) 1.01103(20)

16 1.01084(17) 1.01116(14)

∞ 1.01108(10) 1.01120(22)

Table 3. βc(L) for heat-bath and geometric algorithm respectively.
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Figure 3. Real part of the Wilson loop versus the loop area for the confining phase (β = 0.9)

in the four-dimensional U(1) gauge model. Notice the absence of the 5 × 5 loop in the geometric

algorithm. The lattice volume was 164.

physical situations; as above we have also performed standard simulations for a cross check

between the two approaches. In figures 3 and 4 we report the behaviour of the Wilson loop

in both phases (confining in figure 3 and Coulomb in figure 4) and in lattices of different

size (124, 144, 164).
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Figure 4. Real part of Wilson loop versus the loop perimeter for the Coulomb phase (β = 1.1) in

the four-dimensional U(1) gauge model. The lattice volume was 164.

These figures deserve some comments. The geometric algorithm seems to suffer from

larger statistical errors than the heat-bath method, regardless of the phase of the system.

To understand this result, we should have a close look at the inner machinery of the al-

gorithm, in particular, the way the Wilson loop is computed (see eq. (3.8)). First of all,

the mean value of the Wilson loop is computed as a sum of integer products, implying the

existence of large fluctuations between configurations. For example, doubling the occupa-

tion number of a single plaquette doubles the value of the loop. This is a quite common

fluctuation at the β values of our simulations, and the fluctuations will increase as the loop

(and therefore the number of plaquettes) grows. To complicate the computation further,

we are trying to calculate an exponentially small quantity by summing integer numbers.

The discrete nature of this computation tells us that non-zero values of the quantity must

appear with an exponentially small probability. This explains the inherent difficulties of

the large Wilson loops (4× 4 and greater) measurement in the confining phase. The result

is shown in figure 3: the mean value of the 5 × 5 Wilson loop was exactly zero in the ge-

ometric algorithm, which is of course wrong. Finally, the expectation value of the Wilson

loop is proportional to a (2/β)A factor, A being the loop area. This value may become

huge (or tiny) for large loops and low (or high) values of beta, thus enhancing the problems

that arise from the discreteness of the algorithm.3

Notwithstanding the larger fluctuations in the large Wilson loops within the geometric

algorithm discussed above, our algorithm has a clear advantage against heat-bath: it does

not suffer from ergodicity problems. Indeed the results for the Wilson loop at β = 3

3See [25, 26] for a discussion of some numerically efficient algorithms for the calculation of large Wilson

loops and Polyakov loop correlators.
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Figure 5. Real part of Wilson loop versus the loop perimeter for a large β value (β = 3.0) in the

four-dimensional U(1) gauge model. Notice the difference of performance between the hot and the

cold starts of the Heat-Bath algorithm. The lattice volume was 124.

reported in figure 5 strongly support the previous statement. The points obtained with

the geometric algorithm nicely follow the weak coupling prediction of [27], whereas the

heat-bath results for large Wilson loops, obtained from a hot start, clearly deviate from

the analytical weak coupling prediction. The origin of this anomalous behavior in the heat-

bath case is related to the formation of vortices, which are metastable states, that become

extremely long lived in the Coulomb phase [28].

We have also calculated the plaquette-plaquette correlation (of the real (3.11) and of

the imaginary (3.12) parts) in both phases and for plaquettes living in the same plane.

Here we expect a much milder behaviour for the geometrical algorithm, for there is no

large (2/β)A factor, and the fluctuations are reduced to a couple of plaquettes. The results

are shown in figures 6, 7, 8 and 9.

In all the cases the numerical results obtained with the geometric and heat-bath algo-

rithms essentially agree, except for the correlations of the imaginary part of the plaquettes

in the Coulomb phase (figure 9), where a clear discrepancy for distances larger or equal than

4 is observed. Again in this case the reason for this discrepancy is related, as for the Wil-

son loop results previously discussed, to the formation of extremely long-lived metastable

states [28] in the heat-bath simulations, which seem to be absent in the geometric algo-

rithm. Indeed we have verified, with simulations in 124 lattices, that the discrepancies in

the correlations of the imaginary part of the plaquettes in Coulomb phase at large distances

basically disappear, when we start the heat-bath runs from a cold configuration. There are

still small discrepancies in this case, but they can be reasonably attributed to the difference

in finite volume terms between the two algorithms.
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Figure 6. Correlation function of the plaquette real part versus plaquette-plaquette distance in

lattice units, for the four-dimensional U(1) lattice gauge model in the confining phase (β = 0.9).

Beyond distance 4, the error became far larger than the expectation value of the correlation. The

lattice volume was 164.
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Figure 7. Correlation function of the plaquette real part versus plaquette-plaquette distance in

lattice units, for the four-dimensional U(1) lattice gauge model in the Coulomb phase (β = 1.1).

Beyond distance 4, the error became far larger than the expectation value of the correlation. The

lattice volume was 164.
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Figure 8. Correlation function of the plaquette imaginary part versus plaquette-plaquette distance

in lattice units, for the four-dimensional U(1) lattice gauge model in the confining phase (β = 0.9).

Beyond distance 4, the error became far larger than the expectation value of the correlation. The

lattice volume was 164.
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Figure 9. Correlation function of the plaquette imaginary part versus plaquette-plaquette distance

in lattice units, for the four-dimensional U(1) lattice gauge model in the Coulomb phase (β = 1.1).

Notice the different behaviour of the algorithms at large distances. The lattice volume was 164.
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Figure 10. Ratios of figures of merit for different observables between geometric and heat-bath

algorithms. Re CorrR = 2 and Im CorrR = 2 stand for Real and Imaginary plaquette-plaquette

correlations at distance 2.

To compare computational costs we define a figure of merit which is the product of the

squared error times the cpu time. We expect the error to vanish like 1/
√

NMonte Carlo, and

therefore the quantity defined above should tend asymptotically to a constant. We show

the value of this quantity for several observables in both phases and for both algorithms in

figure 10. We can see that the performance of both algorithms is quite comparable. The

differences that are seen could conceivably change if one were to optimize the specific imple-

mentations, but none is obviously much more efficient than the other for the models studied.

In particular, for the plaquette observable and the specific heat, both algorithms have

a similar figure of merit. From our point of view, the differences are not quite significant,

and could change with careful optimizations. The real plaquette-plaquette correlation is

quite another story, for the differences become significative in the Coulomb phase (a factor

≈ 20), but they do not become worse as β increases, as we test in a 124 simulation at

β = 3.0.

On the other hand, the geometric algorithm seems to perform much better for the

imaginary plaquette-plaquette correlation in the confining phase, whereas in the Coulomb

phase all the advantage vanishes. Again, our 124 computation at β = 3.0 reveal that the

ratio slowly decreases as β increases (being ≈ 0.8 at β = 3.0).

Of course, this analysis assumes that both algorithms have no ergodicity problems. We

must be careful to start from a cold configuration when running the heat-bath simulations

in the Coulomb phase, in order to avoid metastable states which could spoil the reliability

of the simulation.
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5 The three dimensional Ising gauge model

Let us finally come to the point of critical slowing down: this is a major issue as any

improvement in this field can be of paramount importance in term of the cost of large scale

simulations of (statistical) systems at a critical point. Beating critical slowing down is one

of the main motivations in the development of new Monte Carlo algorithms.

Typically what is found in Monte Carlo simulations of system both in statistical physics

and gauge theories is that the autocorrelation time τ diverges as we approach a critical

point, usually as a power of the spatial correlation length: τ ∼ ξz, where ξ is the corre-

lation length and z is a dynamical critical exponent. Usual local algorithms have values

of z around 2, making it very inefficient to simulate close to the critical point. For spin

systems there are well known cluster algorithms with much smaller z. Previously published

results [19] on an algorithm similar to ours, but applied to a non-gauge model, have claimed

a similarly smaller value for z. Having also this motivation in mind, we have investigated

the autocorrelation properties of our numerical scheme on the critical point of a system

that undergoes a second order phase transition (with diverging correlation length). Our

model of choice has been the three dimensional Ising-gauge model. We have performed

extensive simulations in the critical zone of this model for several values of the lattice size

(and hence correlation length) using both the geometric algorithm and the standard Monte

Carlo approach, the latter known to have a lower bound for the autocorrelation exponent

z equal to 2, a value typical of all local algorithms. For lattices up to L = 24 we have in

all cases more than 5 × 105 Monte-Carlo iterations, which increase to more than 1 × 106

for L = 32, 48, and to more than 4 × 106 iterations for the largest lattice L = 64.

For an observable O we define the autocorrelation function ρ(t) as

ρ(t) =
〈(O(i) − OA) (O(i + t) − OB)〉

√

σ2
Aσ2

B

(5.1)

where OA = 〈O(i)〉, OB = 〈O(i + t)〉, σ2
A =

〈

(O(i) − OA)2
〉

, σ2
B =

〈

(O(i + t) − OB)2
〉

,

and 〈〉 denotes average over i. We then define the integrated autocorrelation time by

τ = ρ(0) + 2

N
∑

t=1

ρ(t)
N − t

N
(5.2)

where N is fixed but with N < 3τ and N < 10% of the total sample. In figure 11 we

report the results for the integrated autocorrelation time of the plaquette versus lattice

size in logarithmic scale for both algorithms. The results of our simulations hint to a

different asymptotic behaviour of the autocorrelation time, although with our present data

we cannot obtain a conclusive result. The results for the heat-bath algorithm seem to fall

nicely on a straight line, which would correspond to a simple exponential dependence of

τ on L, with z = 2.67 ± 0.08, but the geometric algorithm presents a more complicated

behaviour, as well as larger errors. There are signs that the asymptotic behaviour might

be better than the heat-bath, but much more extensive simulations, outside the scope of

this work, would be needed to get a definite value for z.
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Figure 11. Autocorrelation times at the critical point (of each algorithm) versus lattice length;

boxes stand for standard algorithm results, with a linear fit to guide the eye, while circles represent

the results of the geometric algorithm. The errors were obtained by a jack-knife procedure.

6 Conclusions and outlook

Our main motivation is the sign problem, particularly in QCD at finite chemical potential,

but which appears also in other systems of interest, for example when a θ vacuum term is

present. New ideas are clearly needed in order to make significant advances in this problem,

and one possibility is the development of new simulation algorithms that might circumvent

the difficulties of conventional approaches.

We have developed a geometric algorithm, based on the strong coupling expansion

of the partition function, which can be applied to abelian pure gauge models. We have

checked in the U(1) model in 3 and 4 dimensions that the algorithm can be implemented

efficiently, and is comparable with a standard heat-bath algorithm for those models. It

seems however that the geometric algorithm does not suffer lack of ergodicity due to the

presence of vortices, as can be the case with heat-bath, depending on the starting point.

We have also studied the algorithm in the 3 dimensional Ising gauge model at the

critical point, where we have seen hints that the asymptotic behaviour of the geometric

algorithm may be better than standard heat-bath. This would be very interesting, because

in contrast to spin systems, where there exists cluster algorithms that can greatly reduce

critical slowing-down, to our knowledge no similar algorithm is known for gauge systems.

Our results are however not enough to establish this, and much more extensive simulations

should be done to clarify this point.

The algorithm can be extended to include fermions, and this constitutes work in

progress. In this case there is a sign problem, and one question we want to answer is

whether such problem is severe or mild.
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